A balloon bursting underwater

Author:

Vasel-Be-Hagh A. R.,Carriveau R.,Ting D. S.-K.

Abstract

A buoyant vortex ring produced by an underwater bursting balloon was studied experimentally. The effect of dimensionless surface tension on characteristics including rise velocity, rate of expansion, circulation, trajectory, and lifetime of the vortex ring bubble was investigated. Results showed reasonable agreement with the literature on vortex rings produced by conventional approaches. It was observed that as the dimensionless surface tension increased, the rise velocity, the circulation and consequently the stability of the vortex ring bubble increased; however, the rate of expansion tends toward constant values. A semi-analytical model is proposed by modifying the drag-based model presented by Sullivan et al. (J. Fluid Mech., vol. 609, 2008, pp. 319–347) to make it applicable to buoyant vortex rings. The modified model suggests that the vortex ring expansion is essentially due to the buoyancy force. An expression is also derived for the circulation in terms of the initial volume of the balloon and the depth at which the balloon bursts.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3