Author:
Iacus Stefano M.,King Gary,Porro Giuseppe
Abstract
Researchers who generate data often optimize efficiency and robustness by choosing stratified over simple random sampling designs. Yet, all theories of inference proposed to justify matching methods are based on simple random sampling. This is all the more troubling because, although these theories require exact matching, most matching applications resort to some form of ex post stratification (on a propensity score, distance metric, or the covariates) to find approximate matches, thus nullifying the statistical properties these theories are designed to ensure. Fortunately, the type of sampling used in a theory of inference is an axiom, rather than an assumption vulnerable to being proven wrong, and so we can replace simple with stratified sampling, so long as we can show, as we do here, that the implications of the theory are coherent and remain true. Properties of estimators based on this theory are much easier to understand and can be satisfied without the unattractive properties of existing theories, such as assumptions hidden in data analyses rather than stated up front, asymptotics, unfamiliar estimators, and complex variance calculations. Our theory of inference makes it possible for researchers to treat matching as a simple form of preprocessing to reduce model dependence, after which all the familiar inferential techniques and uncertainty calculations can be applied. This theory also allows binary, multicategory, and continuous treatment variables from the outset and straightforward extensions for imperfect treatment assignment and different versions of treatments.
Publisher
Cambridge University Press (CUP)
Subject
Political Science and International Relations,Sociology and Political Science
Reference47 articles.
1. Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference
2. Iacus, Stefano . 2018. Replication script for Iacus, King, Porro (2018), “A Theory of Statistical Inference for Matching Methods in Causal Research”. https://doi.org/10.7910/DVN/AOY452, Harvard Dataverse, V1, UNF:6:OEbDh6lIbV89a2sMhvelCQ==.
3. Statistics and Causal Inference
4. Ding, Peng . 2016. A paradox from randomization-based causal inference. Preprint, arXiv:1402.0142.
5. Estimating causal effects of treatments in randomized and nonrandomized studies.
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献