Towards Complex Matter: Supramolecular Chemistry and Self-organization

Author:

Lehn Jean-Marie

Abstract

Chemistry has developed from molecular chemistry, mastering the combination and recombination of atoms into increasingly complex molecules, to supramolecular chemistry, harnessing intermolecular forces for the generation of informed supramolecular systems and processes through the implementation of molecular information carried by electromagnetic interactions. Supramolecular chemistry is actively exploring systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, on the basis of the molecular information stored in the covalent framework of the components and read out at the supramolecular level through specific molecular recognition interactional algorithms, thus behaving as programmed chemical systems. Supramolecular entities as well as molecules containing reversible bonds are able to undergo a continuous change in constitution by reorganization and exchange of building blocks. This capability defines a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels. CDC introduces a paradigm shift with respect to constitutionally static chemistry. It takes advantage of dynamic constitutional diversity to allow variation and selection and thus adaptation. The merging of the features of supramolecular systems – information and programmability; dynamics and reversibility; constitution and structural diversity – points towards the emergence of adaptive chemistry. A further development will concern the inclusion of the arrow of time, i.e. of non-equilibrium, irreversible processes and the exploration of the frontiers of chemical evolution towards the establishment of evolutive chemistry, where the features acquired by adaptation are conserved and transmitted. In combination with the corresponding fields of physics and biology, chemistry thus plays a major role in the progressive elaboration of a science of informed, organized, evolutive matter, a science of complex matter.

Publisher

Cambridge University Press (CUP)

Subject

Political Science and International Relations,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3