Fusion power

Author:

LLEWELLYN-SMITH CHRIS,WARD DAVID

Abstract

Fusion, which powers the sun and stars, is potentially an environmentally responsible and intrinsically safe source of essentially limitless energy on earth. The potential of fusion has been recognized for over 65 years, but mastering fusion on earth has proved to be an enormous scientific and technical challenge. It involves heating a large volume of dilute gas, containing equal parts of deuterium and tritium, to over 100M°C (M°C=one million degrees celsius) while preventing it from being cooled by touching the walls, from which it must be isolated using a ‘magnetic bottle’. This has now been done, and the Joint European Torus (JET) – which is the world's leading fusion research facility – has produced 16 MW of fusion power. The next step, which is to build a power station sized device called ITER, will be taken by a global collaboration. ITER will be twice as big as JET in linear dimensions, and will integrate all the technologies needed in a fusion power station. ITER should produce at least 500 MW of fusion power, ten times more than needed to heat the gas, and confirm that it is possible to build a fusion power station. Time is, however, needed to further develop the technology in order to ensure that it would be reliable and economical, and to test in power station conditions the materials that will be used in its construction, which will have to stand up to intense bombardment by the neutrons that carry the energy out of the magnetic bottle. Up to now, fusion has not been developed with any sense of urgency: since devices called tokamaks emerged in 1969 as the best candidates for bottling hot gases, at least 15 years have been lost due to delays in decision making and inadequate funding. In view of the urgent need for new, large-scale, emission-free sources of energy, and given the fact that – assuming it can be made to work reliably – the economics of fusion power look reasonable, the time has come to develop fusion on the so-called Fast Track. This involves: building ITER and the essential International Fusion Materials Irradiation Facility in parallel, which will take ten years; using the results to finalize the design of a prototype fusion power station (generally called DEMO for Demonstrator); and then constructing DEMO, which will take another ten years. Assuming adequate funding, and that there are no major surprises, DEMO could be putting electricity into the grid within 30 years.

Publisher

Cambridge University Press (CUP)

Subject

Political Science and International Relations,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fusion;Energy Policy;2008-12

2. Building a knowledge-based society: The case of South East Europe;Futures;2007-10

3. Conclusion: The Inevitable Factors in Evolution;The Chemistry of Evolution;2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3