Amino Acids and the Asymmetry of Life

Author:

Meierhenrich Uwe J.

Abstract

‘How did life start on Earth?’ and ‘Why were left-handed amino acids selected for the architecture of proteins?’ A new attempt to answer these questions of high public and interdisciplinary scientific interest will be provided by this review. It will describe most recent experimental data on how the basic and molecular building blocks of life, amino acids, formed in a prebiotic setting. Most amino acids are chiral, that is that they cannot be superimposed with their mirror image molecules (enantiomers). In processes triggering the origin of life on Earth, the equal occurrence, i.e. the parity between left-handed amino acids and their right-handed mirror images, was violated. In the case of amino acids, the balance was tipped to the left – as a result of which life's proteins today exclusively implement the left-handed form of amino acids, called l-amino acid enantiomers. Neither plants, nor animals, including humans, make use of d-amino acids for the molecular architecture of their proteins (enzymes). This review addresses the molecular asymmetry of amino acids in living organisms, namely the preference for left-handedness. What was the cause for the violation of molecular parity of amino acids in the emergence of life on Earth? All the fascinating models proposed by physicists, chemists, and biologists will be vividly presented including the scientific conflicts. Special emphasis will be given to amino acid enantiomers that were subjected to chiral photons. The interaction between racemic molecules and chiral photons was shown to produce an enantiomeric enrichment that will be discussed in the context of absolute asymmetric synthesis. The concluding paragraphs will describe the attempt to verify any of those models with the chirality-module of the Rosetta mission. This European space mission contains probe Philae that was launched on board the Rosetta spacecraft with the aim of landing on the icy surface of comet 67P/Churyumov-Gerasimenko and analysing whether chiral organic compounds are present that could have been brought to the Earth by comet impacts.

Publisher

Cambridge University Press (CUP)

Subject

Political Science and International Relations,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3