Mass-balance observation, reconstruction and sensitivity of Stok glacier, Ladakh region, India, between 1978 and 2019

Author:

Soheb MohdORCID,Ramanathan Alagappan,Angchuk Thupstan,Mandal Arindan,Kumar Naveen,Lotus Sonam

Abstract

AbstractWe present the first-ever mass-balance (MB) observation (2014–19), reconstruction (between 1978 and 2019) and sensitivity of debris-free Stok glacier (33.98°N, 77.45°E), Ladakh Region, India. In-situ MB was negative throughout the study period except in 2018/19 when the glacier witnessed a balanced condition. For MB modelling, three periods were considered based on the available data. Period I (1978–87, 1988/89) witnessed a near balance condition (−0.03 ± 0.35 m w.e. a−1) with five positive MB years. Whereas Period II (1998–2002, 2003–09) and III (2011–19) experienced high (−0.9 ± 0.35 m w.e. a−1) and moderate (−0.46 ± 0.35 m w.e. a−1) negative MBs, respectively. Glacier area for these periods was derived from the Corona, Landsat and PlanetScope imageries using a semi-automatic approach. The in-situ and modelled MBs were in good agreement with RMSE of 0.23 m w.e. a−1, R2 = 0.92, P < 0.05. The average mass loss was moderate (−0.47 ± 0.35 m w.e. a−1) over 28 hydrological years between 1978 and 2019. Sensitivity analysis showed that the glacier was more sensitive to summer temperature (−0.32 m w.e. a−1 °C−1) and winter precipitation (0.12 m w.e. a−1 for ± 10%). It was estimated that ~27% increase in precipitation is required on Stok glacier to compensate for the mass loss due to 1°C rise in temperature.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3