Stochastic modeling of subglacial topography exposes uncertainty in water routing at Jakobshavn Glacier

Author:

MacKie Emma J.ORCID,Schroeder Dustin M.,Zuo Chen,Yin Zhen,Caers Jef

Abstract

AbstractSubglacial topography is an important feature in numerous ice-sheet analyses and can drive the routing of water at the bed. Bed topography is primarily measured with ice-penetrating radar. Significant gaps, however, remain in data coverage that require interpolation. Topographic interpolations are typically made with kriging, as well as with mass conservation, where ice flow dynamics are used to constrain bed geometry. However, these techniques generate bed topography that is unrealistically smooth at small scales, which biases subglacial water flowpath models and makes it difficult to rigorously quantify uncertainty in subglacial drainage patterns. To address this challenge, we adapt a geostatistical simulation method with probabilistic modeling to stochastically simulate bed topography such that the interpolated topography retains the spatial statistics of the ice-penetrating radar data. We use this method to simulate subglacial topography using mass conservation topography as a secondary constraint. We apply a water routing model to each of these realizations. Our results show that many of the flowpaths significantly change with each topographic realization, demonstrating that geostatistical simulation can be useful for assessing confidence in subglacial flowpaths.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Reference48 articles.

1. Applied Geostatistics with SGeMS

2. A mass conservation approach for mapping glacier ice thickness;Morlighem;Geophysical Research Letters,2011

3. Antarctic mapping tools for MATLAB;Greene;Computers and Geosciences,2017

4. The periodic topography of ice stream beds: insights from the Fourier spectra of mega-scale glacial lineations;Spagnolo;Journal of Geophysical Research: Earth Srface,2017

5. Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations;Feyen;Advances in Water Resources,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3