Abstract
AbstractEffective snow grain radius (re) is mapped at high resolution using near-infrared hyperspectral imaging (NIR-HSI). The NIR-HSI method can be used to quantify re spatial variability, change in re due to metamorphism, and visualize water percolation in the snowpack. Results are presented for three different laboratory-prepared snow samples (homogeneous, ice lens, fine grains over coarse grains), the sidewalls of which were imaged before and after melt induced by a solar lamp. The spectral reflectance in each ~3 mm pixel was inverted for re using the scaled band area of the ice absorption feature centered at 1030 nm, producing re maps consisting of 54 740 pixels. All snow samples exhibited grain coarsening post-melt as the result of wet snow metamorphism, which is quantified by the change in re distributions from pre- and post-melt images. The NIR-HSI method was compared to re retrievals from a field spectrometer and X-ray computed microtomography (micro-CT), resulting in the spectrometer having the same mean re and micro-CT having 23.9% higher mean re than the hyperspectral imager. As compact hyperspectral imagers become more widely available, this method may be a valuable tool for assessing re spatial variability and snow metamorphism in field and laboratory settings.
Publisher
Cambridge University Press (CUP)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献