Determining Zygosity in Infant Twins – Revisiting the Questionnaire Approach

Author:

Hardiansyah Irzam,Hamrefors Linnea,Siqueiros Monica,Falck-Ytter Terje,Tammimies Kristiina

Abstract

AbstractAccurate zygosity determination is a fundamental step in twin research. Although DNA-based testing is the gold standard for determining zygosity, collecting biological samples is not feasible in all research settings or all families. Previous work has demonstrated the feasibility of zygosity estimation based on questionnaire (physical similarity) data in older twins, but the extent to which this is also a reliable approach in infancy is less well established. Here, we report the accuracy of different questionnaire-based zygosity determination approaches (traditional and machine learning) in 5.5 month-old twins. The participant cohort comprised 284 infant twin pairs (128 dizygotic and 156 monozygotic) who participated in the Babytwins Study Sweden (BATSS). Manual scoring based on an established technique validated in older twins accurately predicted 90.49% of the zygosities with a sensitivity of 91.65% and specificity of 89.06%. The machine learning approach improved the prediction accuracy to 93.10%, with a sensitivity of 91.30% and specificity of 94.29%. Additionally, we quantified the systematic impact of zygosity misclassification on estimates of genetic and environmental influences using simulation-based sensitivity analysis on a separate data set to show the implication of our machine learning accuracy gain. In conclusion, our study demonstrates the feasibility of determining zygosity in very young infant twins using a questionnaire with four items and builds a scalable machine learning model with better metrics, thus a viable alternative to DNA tests in large-scale infant twin studies.

Publisher

Cambridge University Press (CUP)

Subject

Genetics (clinical),Obstetrics and Gynecology,Pediatrics, Perinatology and Child Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3