Modeling Multiple Regimes in the Business Cycle

Author:

Dijk Dick van,Franses Philip Hans

Abstract

The interest in business-cycle asymmetry has been steadily increasing over the past 15 years. Most research has focused on the different behavior of macroeconomic variables during expansions and contractions, which by now is well documented. Recent evidence suggests that such a two-phase characterization of the business cycle might be too restrictive. In particular, it might be worthwhile to decompose the recovery phase in a high-growth phase (immediately following the trough of a cycle) and a subsequent moderate-growth phase. The issue of multiple regimes in the business cycle is addressed using smooth-transition autoregressive (STAR) models. A possible limitation of STAR models as they currently are used is that essentially they deal with only two regimes. We propose a generalization of the STAR model such that more than two regimes can be accommodated. It is demonstrated that the class of multiple-regime STAR (MRSTAR) models can be obtained from the two-regime model in a simple way. The main properties of the MRSTAR model and several issues that are relevant for empirical specification are discussed in detail. In particular, a Lagrange multiplier-type test is derived that can be used to determine the appropriate number of regimes. A limited simulation study indicates its practical usefulness. Application of the new model class to U.S. real GNP provides evidence in favor of the existence of multiple business-cycle phases.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3