What is the resource footprint of a computer science department? Place, people, and Pedagogy

Author:

Mian I. S.,Twisleton D.,Timm D. A.

Abstract

AbstractInternet and Communication Technology/electrical and electronic equipment (ICT/EEE) form the bedrock of today’s knowledge economy. This increasingly interconnected web of products, processes, services, and infrastructure is often invisible to the user, as are the resource costs behind them. This ecosystem of machine-to-machine and cyber-physical-system technologies has a myriad of (in)direct impacts on the lithosphere, biosphere, atmosphere, and hydrosphere. As key determinants of tomorrow’s digital world, academic institutions are critical sites for exploring ways to mitigate and/or eliminate negative impacts. This Report is a self-deliberation provoked by the questionHow do we create more resilient and healthier computer science departments: living laboratories for teaching and learning about resource-constrained computing, computation, and communication?Our response for University College London (UCL) Computer Science is to reflect on how, when, and where resources—energy, (raw) materials including water, space, and time—are consumed by the building (place), its occupants (people), and their activities (pedagogy). This perspective and attendant first-of-its-kind assessment outlines a roadmap and proposes high-level principles to aid our efforts, describing challenges and difficulties hindering quantification of the Department’s resource footprint. Qualitatively, we find a need to rematerialise the ICT/EEE ecosystem: to reveal the full costs of the seemingly intangible information society by interrogating the entire life history of paraphernalia from smartphones through servers to underground/undersea cables; another approach is demonstrating the corporeality of commonplace phrases and Nature-inspired terms such as artificial intelligence, social media, Big Data, smart cities/farming, the Internet, the Cloud, and the Web. We sketch routes to realising three interlinked aims: cap annual power consumption and greenhouse gas emissions, become a zero waste institution, and rejuvenate and (re)integrate the natural and built environments.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

Reference271 articles.

1. Bhardwaj, P (2018) Fiber optic wires, servers, and more than 550,000 miles of underwater cables: Here’s what the internet actually looks like. Business Insider, 09 June 2018. Available at https://www.businessinsider.nl/how-internet-works-infrastructure-photos-2018-5.

2. E-Waste Recycling: Where Does It Go from Here?

3. Top Ten Obstacles along Distributed Ledgers Path to Adoption

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3