Author:
Evans David E.,Kishimoto Akitaka
Abstract
When considering an action α of a compact group G on a C*-algebra A, the notion of an α-invariant Hilbert space in A has proved extremely useful [1, 4, 8, 14, 17, 18]. Following Roberts [13] a Hilbert space in (a unital algebra) A is a closed subspace H of A such that x*y is a scalar for all x, y in H. For example if G is abelian, and α is ergodic in the sense that the fixed point algebra Aα is trivial, then A is generated as a Banach space by a unitary in each of the spectral subspaceswhich are then invariant one dimensional Hilbert spaces. If G is not abelian, then Hilbert spaces (which are always assumed to be invariant) do not necessarily exist, even for ergodic actions. For non-ergodic actions, it is also desirable to relax the requirement to x*y being a constant multiple of some positive element of Aα. More generally, if γ is a finite dimensional matrix representation of G and n is a positive integer, we define to be the subspacewhere d is the dimension d(γ) of γ, and Mnd denotes n×d complex matrices. (Usually we will denote the extended action of αg to αg ⊗ 1 on A⊗Mnd again by αg.) Let .
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference18 articles.
1. [18] Wassermann A. J. . Automorphic actions of compact groups on operator algebras. Thesis, University of Pennsylvania (1981).
2. Dynamical semigroups commuting with compact abelian actions
3. Extension of KMS states and chemical potential
4. Derivations of simple C*-algebras tangential to compact automorphism groups;Robinson;J. Operator Theory,1985
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献