The lap-counting function for linear mod one transformations I: explicit formulas and renormalizability

Author:

Flatto Leopold,Lagarias Jeffrey C.

Abstract

AbstractLinear mod one transformations are the maps of the unit interval given by fβα(x) = βx + α (mod 1), with β > 1 and 0 ≤ α < 1. The lap-counting function is the function where the lap number Ln essentially counts the number of monotonic pieces of the nth iterate . We derive an explicit factorization formula for Lβα(z) which directly shows that Lβα(z) is a function meromorphic in the open unit disk {z: |z| < 1} and analytic in the open disk {z: |z| < 1/β}, with a simple pole at z = 1/β.Comparison with a known formula for the Artin—Mazur—Ruelle zeta function ζβ,α(z) of fβα shows that Lβα(z) and ζβ,α(z) have identical sets of singularities in the disk {z: |z| < 1}. We derive two more factorization formulae for Lβ,α(z) valid for certain parameter ranges of (β, α). When 1 < α + β ≤ 2, there is sometimes a ‘renormalization’ structure of such maps present, which has previously been studied in connection with simplified models for the Lorenz attractor. In the case that fβα is non-trivially renormalizable, we obtain a factorization formula for Lβα(z). For (β, α) in a region contained in 2 < α + β ≤ 3 we obtain a factorization formula which relates Lβα(z) to a ‘rescaled’ lap-counting function from the region 1 < α + β ≤ 2. The various factorizations exhibit certain singularities of Lβα(z) on the circle |z| = 1/β. These singularities are related to topological dynamical properties of fβ,α. In parts II and III we show that these comprise the complete set of such singularities on the circle |z| = 1/β.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Reference43 articles.

1. Maximal measures for piecewise monotonically increasing transformations on [0,1]

2. Conjugates of Beta-Numbers and the Zero-Free Domain for a Class of Analytic Functions

3. The structure of piecewise monotonic transformations

4. [7] Flatto L. and Lagarias J. C. . The lap-counting function of the linear mod one transformation III. Period of Markov chain. Ergod. Th. & Dynam. Sys. To appear.

5. Fredholm determinant for piecewise linear transformations;Mori;Osaka J. Math.,1990

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Eigenfunctions of the Perron–Frobenius operators for generalized beta-maps;Dynamical Systems;2021-11-26

2. Matching for generalised β-transformations;Indagationes Mathematicae;2017-02

3. Renormalization and conjugacy of piecewise linear Lorenz maps;Advances in Mathematics;2015-02

4. On Hausdorff Dimension of Invariant Sets for a Class of Piecewise Linear Maps;Difference Equations, Discrete Dynamical Systems and Applications;2015

5. Critical itineraries of maps with constant slope and one discontinuity;Mathematical Proceedings of the Cambridge Philosophical Society;2014-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3