Author:
DEN HOLLANDER FRANK,STEIF JEFFREY E.
Abstract
We extend our previous work by proving that for translation invariant Gibbs states on ${\mathbb Z}^d$ with a translation invariant interaction potential $\Psi=(\Psi_A)$ satisfying $\sum_{A \ni 0}|A|^{-1}[\diam(A)]^d\|\Psi_A\|<\infty$ the following hold: (1) the Kolmogorov-property implies a trivial full tail and (2) the Bernoulli-property implies Følner independence. The existence of bilaterally deterministic Bernoulli Shifts tells us that neither (1) nor (2) is, in general, true for random fields without some further assumption (even when $d=1$).
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献