Abstract
AbstractWe show that for T a Dunford–Schwartz operator on a σ-finite measure space (X,Σ,μ) and f∈L1(X,μ), whenever the one-sided ergodic Hilbert transform ∑ n≥1(Tnf/n) converges in norm, it converges μ-a.s. A similar result is obtained for any positive contraction of some fixed Lp(X,Σ,μ), p>1. Applying our result to the case where T is the (unitary) operator induced by a measure-preserving (invertible) transformation, we obtain a positive answer to a question of Gaposhkin.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献