Author:
ARBIETO ALEXANDER,MATHEUS CARLOS
Abstract
AbstractWe prove that in a compact manifold of dimension n≥2, C1+α volume-preserving diffeomorphisms that are robustly transitive in the C1-topology have a dominated splitting. Also we prove that for three-dimensional compact manifolds, an isolated robustly transitive invariant set for a divergence-free vector field cannot have a singularity. In particular, we prove that robustly transitive divergence-free vector fields in three-dimensional manifolds are Anosov. For this, we prove a ‘pasting’ lemma, which allows us to make perturbations in conservative systems.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献