Abstract
AbstractIn this paper, we first discuss some connections between template theory and the description of basic sets of Smale flows on 3-manifolds due to F. Béguin and C. Bonatti. The main tools we use are symbolic dynamics, template moves and some combinatorial surgeries. Secondly, we obtain some relationship between the surgeries and the number of S1×S2 factors of M for a non-singular Smale flow on a given closed orientable 3-manifold M. We also prove that any template T can model a basic set Λ of a non-singular Smale flow on nS1×S2 for some positive integer n.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献