Author:
Kim Ki Hang,Roush Fred W.
Abstract
AbstractShift equivalence is the relation between A, B that there exists S, R, n > 0 with RA = BR, AS = SB, SR = An, RS = Bn. Strong shift equivalence is the equivalence relation generated by these equations with n = 1. We prove that for many Boolean matrices strong shift equivalence is characterized by shift equivalence and a trace condition. However, we also show that if A is strongly shift equivalent to B, then there exists a homomorphism from an iterated directed edge graph of A to the graph of B preserving the traces of powers. This yields results on colourings of iterated directed edge graphs and might distinguish new strong equivalence classes.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Szymczak Functor and Shift Equivalence on the Category of Finite Sets and Finite Relations;Journal of Dynamics and Differential Equations;2023-12-09
2. Index;An Introduction to Symbolic Dynamics and Coding;2021-01-21
3. Notation Index;An Introduction to Symbolic Dynamics and Coding;2021-01-21
4. Addendum Bibliography;An Introduction to Symbolic Dynamics and Coding;2021-01-21
5. Bibliography;An Introduction to Symbolic Dynamics and Coding;2021-01-21