Abstract
AbstractAn extended version of the ergodic closing lemma of Mañé is proved. As an application, we show that, C1 densely in the complement of the closure of Morse–Smale diffeomorphisms and those with a homoclinic tangency, there exists a weakly hyperbolic structure (dominated splittings with average hyperbolicity at almost every point on hyperbolic parts, and one-dimensional center direction when zero Lyapunov exponents are involved) over the supports of all non-atomic ergodic measures. As another application, we prove an approximation theorem, which claims that approximating the Lyapunov exponents of any non-atomic ergodic measure by those of an atomic ergodic measure by a C1 small perturbation is possible.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献