Author:
CORNELISSEN GUNTHER,KOOL JANNE
Abstract
AbstractOne can describe isomorphism of two compact hyperbolic Riemann surfaces of the same genus by a measure-theoretic property: a chosen isomorphism of their fundamental groups corresponds to a homeomorphism on the boundary of the Poincaré disc that is absolutely continuous for Lebesgue measure if and only if the surfaces are isomorphic. In this paper, we find the corresponding statement for Mumford curves, a non-Archimedean analogue of Riemann surfaces. In this case, the mere absolute continuity of the boundary map (for Schottky uniformization and the corresponding Patterson–Sullivan measure) only implies isomorphism of the special fibers of the Mumford curves, and the absolute continuity needs to be enhanced by a finite list of conditions on the harmonic measures on the boundary (certain non-Archimedean distributions constructed by Schneider and Teitelbaum) to guarantee an isomorphism of the Mumford curves. The proof combines a generalization of a rigidity theorem for trees due to Coornaert, the existence of a boundary map by a method of Floyd, with a classical theorem of Babbage, Enriques and Petri on equations for the canonical embedding of a curve.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference29 articles.
1. O. Dodane . Théorèmes de Petri pour les courbes stables et dégénérescence du système d’équations du plongement canonique. Université de Strasbourg Thesis, url: http://tel.archives-ouvertes.fr/docs/00/40/42/57/PDF/these-OD.pdf, 2009.
2. Hausdorff dimension of quasi-circles
3. Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov
4. Lattices in rank one Lie groups over local fields
5. Holography principle and arithmetic of algebraic curves
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献