Ergodic theory on Galton—Watson trees: speed of random walk and dimension of harmonic measure

Author:

Lyons Russell,Pemantle Robin,Peres Yuval

Abstract

AbstractWe consider simple random walk on the family treeTof a nondegenerate supercritical Galton—Watson branching process and show that the resulting harmonic measure has a.s. strictly smaller Hausdorff dimension than that of the whole boundary ofT. Concretely, this implies that an exponentially small fraction of thenth level ofTcarries most of the harmonic measure. First-order asymptotics for the rate of escape, Green function and the Avez entropy of the random walk are also determined. Ergodic theory of the shift on the space of random walk paths on trees is the main tool; the key observation is that iterating the transformation induced from this shift to the subset of ‘exit points’ yields a nonintersecting path sampled from harmonic measure.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Reference21 articles.

1. Some existence conditions for K-decompositions for special flows;Gurevic;Trans. Moscow Math. Soc.,1967

2. Subdiffusive behavior of random walk on a random cluster;Kesten;Ann. Inst. Henri Poincare Probab. Stat.,1986

3. Dimension, entropy and Lyapunov exponents

4. Exact distributions of kin numbers in a Galton-Watson process

5. Markov Processes. Structure and Asymptotic Behavior

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The frog model on Galton–Watson trees;The Annals of Applied Probability;2024-08-01

2. Conductance of a subdiffusive random weighted tree;Latin American Journal of Probability and Mathematical Statistics;2023

3. Sparse expanders have negative curvature;Geometric and Functional Analysis;2022-09-22

4. Heavy range of the randomly biased walk on Galton–Watson trees in the slow movement regime;Stochastic Processes and their Applications;2022-08

5. Proof of the satisfiability conjecture for large $k$;Annals of Mathematics;2022-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3