Author:
NAYAK TARAKANTA,PRASAD M. GURU PREM
Abstract
AbstractLet ℳ={f(z)=(zm/sinhm z) for z∈ℂ∣ either m or m/2 is an odd natural number}. For eachf∈ℳ, the set of singularities of the inverse function offis an unbounded subset of the real line ℝ. In this paper, the iteration of functions in one-parameter family 𝒮={fλ(z)=λf(z)∣λ∈ℝ∖{0}} is investigated for eachf∈ℳ. It is shown that, for eachf∈ℳ, there is a critical parameterλ*>0 depending onfsuch that a period-doubling bifurcation occurs in the dynamics of functionsfλin 𝒮 when the parameter |λ| passes throughλ*. The non-existence of Baker domains and wandering domains in the Fatou set offλis proved. Further, it is shown that the Fatou set offλis infinitely connected for 0<∣λ∣≤λ*whereas for ∣λ∣≥λ*, the Fatou set offλconsists of infinitely many components and each component is simply connected.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献