Abstract
AbstractGiven a measure-preserving transformation T on a Lebesgue σ-algebra, a complete T-invariant sub-σ-algebra is said to split if there is another complete T-invariant sub-σ-algebra on which T is Bernoulli which is completely independent of the given sub-σ-algebra and such that the two sub-σ-algebras together generate the entire σ-algebra. It is easily shown that two splitting sub-σ-algebras with nothing in common imply T to be K. Here it is shown that T does not have to be Bernoulli by exhibiting two such non-intersecting σ-algebras for the T,T−1 transformation, negatively answering a question posed by Thouvenot in 1975.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Brin Prize works of Tim Austin;Journal of Modern Dynamics;2023
2. Measure concentration and the weak Pinsker property;Publications mathématiques de l'IHÉS;2018-02-15