Abstract
AbstractIn this paper, we give an elementary proof of the absence of invariant line fields on the conical Julia set of an analytic function of one variable. This proof applies not only to rational and transcendental meromorphic functions (where it was previously known), but even to the extremely general setting of Ahlfors islands maps as defined by Epstein. In fact, we prove a more general result on the absence of invariant differentials, measurable with respect to a conformal measure that is supported on the (unbranched) conical Julia set. This includes the study of cohomological equations for log ∣f′∣, which are relevant to a number of well-known rigidity questions. In particular, we prove the absence of continuous line fields on the Julia set of any transcendental entire function.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献