Author:
Brogaard Jonathan,Zareei Abalfazl
Abstract
Abstract
Practitioners allocate substantial resources to technical analysis whereas academic theories of market efficiency rule out technical trading profitability. We study this long-standing puzzle by applying a diverse set of machine learning algorithms. The results show that an investor can find profitable technical trading rules using past prices, and that this out-of-sample profitability decreases through time, showing that markets have become more efficient over time. In addition, we find that the evolutionary genetic algorithm’s attitude in not shying away from erroneous predictions gives it an edge in building profitable strategies compared to the strict loss-minimization-focused machine learning algorithms.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Finance,Accounting
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献