Low carrier volume herbicide trials and UAAS support management efforts of giant salvinia (Salvinia molesta): a case study

Author:

Howell Andrew W.ORCID,Haug Erika J.ORCID,Everman Wesley J.ORCID,Leon Ramon G.ORCID,Richardson Robert J.ORCID

Abstract

AbstractExpanding the current aquatic herbicide portfolio, reducing total spray volumes, or remotely delivering herbicide using novel spray technologies could improve management opportunities targeting invasive aquatic plants, where options are more limited. However, research on giant salvinia (Salvinia molesta Mitchell) response to foliar herbicide applications at carrier volumes ≤140 L ha−1 is incomplete. Likewise, no data exist documenting S. molesta control with unoccupied aerial application systems (UAAS). Following the recent >100-ha incursion of S. molesta in Gapway Swamp, NC, a case study was developed to provide guidance for ongoing management efforts. In total, three field trials evaluated registered aquatic and experimental herbicides using a 140 L ha−1 carrier volume. Select foliar applications from UAAS were also evaluated. Results at 8 wk after treatment (WAT) indicated the experimental protoporphyrinogen oxidase inhibitor, PPO-699-01 (424 g ai ha−1), in combination with endothall dipotassium salt (2,370 g ae ha−1) provided 78% visual control, whereas control when PPO-699-01 (212 g ai ha−1) was applied alone was lower at 35%. Evaluations also showed diquat (3,136 g ai ha−1) alone, glyphosate (4,539 g ae ha−1) alone, and metsulfuron-methyl (42 g ai ha−1) alone achieved 86% to 94% visual plant control at 8 WAT. Sequential foliar applications of diquat, flumioxazin (210 g ai ha−1), and carfentrazone (67 g ai ha−1) at 6 wk following exposure to in-water fluridone treatments were no longer efficacious by 6 WAT due to plant regrowth. Carfentrazone applications made from a backpack sprayer displayed greater control than applications made with UAAS deploying identical carrier volumes at 2 WAT; however, neither application method provided effective control at 8 WAT. Additional field validation is needed to further guide management direction of S. molesta control using low carrier volume foliar applications.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3