The in vitro transformation of the miracidium to the mother sporocyst of Schistosoma margrebowiei; changes in the parasite surface and implications for interactions with snail plasma factors

Author:

Daniel B. E.,Preston T. M.,Southgate V. R.

Abstract

SUMMARYThe in vitro transformation of the miracidium to the mother sporocyst of Schistosoma margrebowiei was initiated by placing the miracidium in mammalian physiological saline. The transformation occurs in stages: the cilia cease beating; the ciliated plates become detached from the intercellular ridges and underlying muscle layers; the intercellular ridges spread over the body surface eventually forming a new tegument; the sporocyst changes from an ovoid to a tubular shape in about 48 h at room temperature. The surfaces of the miracidium, sporocyst and cercaria of S. margrebowiei display stage-specific carbohydrates on their surfaces as indicated by lectin staining. Ricin120 stains the cilia alone of the miracidium whereas peanut agglutinin stains the larval surface except for the cilia. The intercellular ridges of the miracidium stain with concanavalin A and wheat germ agglutinin, and these lectins stain the entire surface of the mature mother sporocyst. The cercaria is the only larval stage which stains positively with asparagus pea lectin. Bulinus nasutus is incompatible with Schistosoma margrebowiei; the haemolymph of this snail contains an agglutinin which agglutinates a wide variety of mammalian erythrocytes including those of human ABO blood groups. The haemagglutinin titre of B. nasutus plasma is reduced after incubation with miracidia of S. margrebowiei indicating that the agglutinin is absorbed onto the surface of this larval stage but not that of the mother sporocyst or cercaria. The possible roles of agglutinins in host–parasite interactions together with the significance of the differences in the surface carbohydrates of the larval stages are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3