Machine learning-based analyses support the existence of species complexes for Strongyloides fuelleborni and Strongyloides stercoralis

Author:

Barratt Joel L. N.ORCID,Sapp Sarah G. H.ORCID

Abstract

AbstractHuman strongyloidiasis is a serious disease mostly attributable to Strongyloides stercoralis and to a lesser extent Strongyloides fuelleborni, a parasite mainly of non-human primates. The role of animals as reservoirs of human-infecting Strongyloides is ill-defined, and whether dogs are a source of human infection is debated. Published multi-locus sequence typing (MLST) studies attempt to elucidate relationships between Strongyloides genotypes, hosts, and distributions, but typically examine relatively few worms, making it difficult to identify population-level trends. Combining MLST data from multiple studies is often impractical because they examine different combinations of loci, eliminating phylogeny as a means of examining these data collectively unless hundreds of specimens are excluded. A recently-described machine learning approach that facilitates clustering of MLST data may offer a solution, even for datasets that include specimens sequenced at different combinations of loci. By clustering various MLST datasets as one using this procedure, we sought to uncover associations among genotype, geography, and hosts that remained elusive when examining datasets individually. Multiple datasets comprising hundreds of S. stercoralis and S. fuelleborni individuals were combined and clustered. Our results suggest that the commonly proposed ‘two lineage’ population structure of S. stercoralis (where lineage A infects humans and dogs, lineage B only dogs) is an over-simplification. Instead, S. stercoralis seemingly represents a species complex, including two distinct populations over-represented in dogs, and other populations vastly more common in humans. A distinction between African and Asian S. fuelleborni is also supported here, emphasizing the need for further resolving these taxonomic relationships through modern investigations.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

Reference72 articles.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Genomic analysis of Strongyloides stercoralis and Strongyloides fuelleborni in Bangladesh;PLOS Neglected Tropical Diseases;2024-09-03

2. Genomic analysis of Strongyloides stercoralis and Strongyloides fuelleborni in Bangladesh;2024-05-16

3. Strongyloides stercoralis genotyping in a human population in southwestern Iran;Parasites & Vectors;2024-01-16

4. Strongyloides in non-human primates: significance for public health control;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-11-27

5. Strongyloides questions—a research agenda for the future;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3