The transition from an aerobic to an anaerobic energy metabolism in transforming Schistosoma mansoni cercariae occurs exclusively in the head

Author:

Horemans A. M. C.,Tielens A. G. M.,Van Den Bergh S. G.

Abstract

SUMMARYIt has been shown that in intact cercariae of Schistosoma mansoni in water, both head and tail had an identical, aerobic energy metabolism. As long as the environment was water, glucose was mainly degraded to carbon dioxide by both head and tail whether or not these two were still connected to each other. Transfer of intact cercariae into a simple salt medium supplemented with glucose resulted in a very rapid transition towards a more anaerobic energy metabolism: the production of lactate and pyruvate increased, whereas the production of carbon dioxide remained more or less constant. A concomitant rise in temperature to 37°C was not essential for this biochemical transition, but made it more pronounced. Experiments on isolated cercarial bodies and tails in a transforming medium demonstrated that the tails oxidized glucose to carbon dioxide, whereas bodies produced mainly pyruvate and lactate. The results showed that the metabolic transition towards a more anaerobic energy metabolism occurred only in the head and not in the tail of the cercariae. Loss of the tail was shown not to be a pre-requisite for this transition, nor did it by itself trigger a metabolic switch in the resulting cercarial body.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3