Dexamethasone downregulates the expressions of MMP-9 and oxidative stress in mice with eosinophilic meningitis caused by Angiostrongylus cantonensis infection

Author:

Tsai Hung-ChinORCID,Chen Yu-Hsin

Abstract

AbstractSteroids have been shown to be beneficial in patients and mice with eosinophilic meningitis caused by Angiostrongylus cantonensis infection; however, the mechanism for this beneficial effect is unknown. We speculated that the effect of steroids in eosinophilic meningitis caused by A. cantonensis infection may be mediated by the downregulation of matrix metallopeptidase-9 (MMP-9) and oxidative stress pathways via glucocorticoid receptors (GRs). We found blood–brain barrier (BBB) dysfunction in mice with eosinophilic meningitis 2–3 weeks after infection as evidenced by increased extravasation of Evans blue and cerebrospinal fluid (CSF) albumin levels. The administration of dexamethasone significantly decreased the amount of Evans blue and CSF albumin. The effect of dexamethasone was mediated by GRs and heat shock protein 70, resulting in subsequent decreases in the expressions of nuclear factor kappa B (NF-κB), c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) in the CSF and brain parenchymal after 2 weeks of steroid administration. Steroid treatment also decreased CSF/brain homogenate MMP-9 concentrations, but had no effect on CSF MMP-2 levels, indicating that MMP-9 rather than MMP-2 played a major role in BBB dysfunction in mice with eosinophilic meningitis. The concentration of 8-hydroxy-2'-deoxyguanosine (8-OHdG) gradually increased after 1–3 weeks of infection, and the administration of dexamethasone significantly downregulated the concentration of oxidized derivative 8-OHdG in CSF. In conclusion, increased 8-OHdG and MMP-9 concentrations were found in mice with eosinophilic meningitis caused by A. cantonensis infection. The effect of dexamethasone was mediated by GRs and significantly decreased not only the levels of 8-OHdG and MMP-9 but also NF-κB, JNK and ERK.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3