Parasitology and immunology of mice vaccinated with irradiated Litomosoides sigmodontis larvae

Author:

LE GOFF L.,MARTIN C.,OSWALD I. P.,VUONG P. N.,PETIT G.,UNGEHEUER M. N.,BAIN O.

Abstract

This study was performed with Litomosoides sigmodontis, the only filarial species which can develop from the infective larvae to the patent phase in immunocompetent laboratory BALB/c mice. Parasitological features and immune responses were analysed up to 3 months before and after challenge inoculation, by comparing 4 groups of mice: vaccinated challenged, challenged only, vaccinated only, and naive mice. Male larvae were very susceptible to irradiation and only female irradiated larvae survived in vivo. Protection, assessed by a lower recovery rate, was confirmed and was established within the first 2 days of challenge. This early reduction of the recovery rate in vaccinated challenged mice was determined by their immune status prior to the challenge inoculation. This was characterized by high specific IgM and IgG subclass (IgG1, IgG2a and IgG3) levels, high specific IL-5 secretion from spleen cells in vitro and a high density of eosinophils in the subcutaneous connective tissue. Six h after the challenge inoculation, most tissue eosinophils were degranulated in vaccinated challenged mice. Thus, in the protocol of vaccination described, protection appeared mainly to result from the stimulation of a Th2 type response and eosinophils seemed to be the main effectors for the increased killing of infective larvae in vaccinated challenged mice. Two months after challenge inoculation, the percentage of microfilaraemic mice was lower in vaccinated challenged mice as a consequence of this overall reduction in the worm load. In both vaccinated challenged and challenged only groups, the in vitro splenocyte proliferative capacity was reduced in microfilaraemic mice.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3