Immunocytochemical study on biologically active neurosubstances in daughter sporocysts and cercariae of Trichobilharzia ocellata and Schistosoma mansoni

Author:

Solis-soto J. M.,De Jong Brink M.

Abstract

SUMMARYImmunocytochemical techniques applied to sections and whole-mount preparations of cercariae from two species of trematodes, Trichobilharzia ocellata and Schistosoma mansoni, revealed the occurrence of immunoreactivity (IR) to several neurosubstances in the nervous system (NS). Immunostaining was localized in cerebral ganglia, in the main commissure, in anterior and posterior nerve trunks, as well as in a pair of nerve fibres running along the tail. In T. Ocellata, immunoreactivity (IR) was observed with antisera raised against: glutamate, FMRFamide, catch-relaxing peptide (CARP), small cardiac peptide B (SCPB), arg-vasotocin (AVT), arg-vasopressin (AVP), and substance P. In S. mansoni antisera raised against glutamate, FMRFamide, CARP, SCPB, α-caudodorsal cell peptides (α-CDCP), and cholecystokinin (CCK) showed neuronal IR. With the other 51 antisera tested no IR was observed. With anti-APGWamide, IR was observed outside the NS in cells of the wall of the daughter sporocyst and in flame cells of cercariae of T. ocellata. IR to FMRFamide was present in the escape glands of the intrasporocystic cercariae of T. ocellata and S. mansoni. IR to somatostatin was observed in subtegumental parenchymal cells of cercariae of S. mansoni. IR to met-enkephalin was present in cells of the cercarial embryos and in undifferentiated cells in developing cercariae. Trematodes are, together with cestodes, phylogenetically the oldest classes in which glutamate-like material and immunopositivity to a number of neuropeptides isolated from invertebrates has been demonstrated. The results are discussed in relation to immunocytochemical data obtained for other platyhelminths, to endogenous functions of the immunopositive materials, and to their possible role in parasite–host interactions.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3