Neuronal uptake of pesticides disrupts chemosensory cells of nematodes

Author:

WINTER M. D.,MCPHERSON M. J.,ATKINSON H. J.

Abstract

Low doses of the acetylcholinesterase-inhibiting carbamate nematicides disrupt chemoreception in plant-parasitic nematodes. Fluorescein isothiocyanate (FITC)/dextran conjugates up to 12 kDa are taken up from the external medium by certain chemosensory neurons in Caenorhabditis elegans. Similar chemoreceptive neurons of the non-feeding infective stage of Heterodera glycines (soybean cyst nematode) fill with FITC and the nuclei of their cell bodies selectively stain with bisbenzimide. The widely used nematicide aldicarb disrupts the chemoreceptive response of H. glycines with 50% inhibition at very low concentrations (ca 1 pM), some 10−6-fold lower than required to affect locomotion. Similarly, the anthelmintic levamisole had this effect at 1 nM. Peptides selected as mimetics of aldicarb and levamisole also disrupt chemoreception in H. glycines and Globodera pallida at 10−3-fold or lower concentration than required to inhibit locomotion. We propose an uptake pathway for aldicarb, levamisole, peptide mimetics and other soluble molecules by retrograde transport along dendrites of chemoreceptive neurons to the cell bodies and synapses where they act. This may prove to be a general mechanism for the low-dose effects of some nematicides and anthelmintics.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Use of Caenorhabditis elegans as a Model for Plant-Parasitic Nematodes: What Have We Learned?;Annual Review of Phytopathology;2024-09-09

2. Root–Knot Nematodes in Cereal and Pulse Crops, and Their Management by Novel Biological and Biotechnological Approaches;Novel Biological and Biotechnological Applications in Plant Nematode Management;2023

3. Transgenics, Application in Plant Nematode Management;Novel Biological and Biotechnological Applications in Plant Nematode Management;2023

4. Novel Biotechnological Interventions in Plant Nematode Management Technologies;Novel Biological and Biotechnological Applications in Plant Nematode Management;2023

5. Exploiting Plant–Phytonematode Interactions to Upgrade Safe and Effective Nematode Control;Life;2022-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3