Ecology of larval trematodes in three marine gastropods

Author:

CURTIS L. A.

Abstract

To comprehend natural host–parasite systems, ecological knowledge of both hosts and parasites is critical. Here I present a view of marine systems based on the snail Ilyanassa obsoleta and its trematodes. This system is reviewed and two others, those of the snails Cerithidea californica and Littorina littorea, are then summarized and compared. Trematodes can profoundly affect the physiology, behaviour and spatial distribution of hosts. Studying these systems is challenging because trematodes are often embedded in host populations in unappreciated ways. Trematode prevalence is variable, but can be high in populations of all three hosts. Conditions under which single- and multiple-species infections can accumulate are considered. Adaptive relations between species are likely the most important and potentials for adaptation of parasites to hosts, hosts to parasites, and parasites to other parasites are also considered. Even if colonization rate is low, a snail population can develop high trematode prevalence, if infections persist long and the host is long-lived and abundant. Trematodes must be adapted to use their snail hosts. However, both I. obsoleta and L. littorea possess highly dispersed planktonic larvae and trematode prevalence is variable among snail populations. Host adaptation to specific infections, or even to trematodes in general, is unlikely because routine exposure to trematodes is improbable. Crawl-away juveniles of C. californica make adaptation to trematodes in that system a possibility. Trematode species in all three systems are not likely adapted to each other. Multiple-species infections are rare and definitive hosts scatter parasite eggs among snail populations with variable prevalences. Routine co-occurrence of trematodes in snails is thus unlikely. Adaptations of these larval trematodes to inhabit the snail host must, then, be the basis for what happens when they do co-occur.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3