Beak condition drives abundance and grooming-mediated competitive asymmetry in a poultry ectoparasite community

Author:

CHEN BRIAN L.,HAITH KATHRYN L.,MULLENS BRADLEY A.

Abstract

SUMMARYObjective.Ornithonyssus sylviarum(northern fowl mite) andMenacanthus stramineus(chicken body louse) are key poultry pests currently controlled by exclusion or pesticide application. We studied how host beak condition affected their populations over time and how the lice and mites might interact on a host.Methods. Beak-trimmed or beak-intact white leghorn hens were infested initially with either mites or lice and subsequently challenged using the alternate ectoparasite species (reciprocal transfer), while other hens harboured only the initial ectoparasite species.Results. Beak-trimmed hens had far higher ectoparasite numbers relative to beak-intact hens, and the 2 ectoparasites showed evidence of grooming-mediated competitive asymmetry. On beak-trimmed hens, larger numbers of lice quickly nearly completely excluded mites in competition for enemy-free space (lower abdomen), while in the reciprocal transfer mites did not affect louse numbers on beak-trimmed hosts. The 2 ectoparasites co-existed on beak-intact hens, which were better able to defend the lower abdomen habitat by grooming.Conclusion. Lice are somewhat less damaging and much easier to control relative to mites, and might be used to eliminate mites in commercial, beak-trimmed flocks. Beak trimming impairs host grooming and contributes greatly to the high ectoparasite populations seen in commercial flocks. The study adds incentives for poultry breeders to develop more docile hen strains that can be held without beak trimming. This has advantages both to welfare advocates and producers who may no longer need to use insecticides for pest control or be concerned about worker exposure to pesticides.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3