Immunological consequences of stress-related proteins – cytosolic tryparedoxin peroxidase and chaperonin TCP20 – identified in splenic amastigotes ofLeishmania donovanias Th1 stimulatory, in experimental visceral leishmaniasis

Author:

JAISWAL ANIL KUMAR,KHARE PRASHANT,JOSHI SUMIT,RAWAT KEERTI,YADAV NARENDRA,SUNDAR SHYAM,DUBE ANURADHA

Abstract

SUMMARYIn earlier studies, proteomic characterization of splenic amastigote fractions from clinical isolates ofLeishmania donovani, exhibiting significant cellular responses in curedLeishmaniasubjects, led to the identification of cytosolic tryparedoxin peroxidase (LdcTryP) and chaperonin-TCP20 (LdTCP20) as Th1-stimulatory proteins. Both the proteins, particularly LdTCP20 for the first time, were successfully cloned, overexpressed, purified and were found to be localized in the cytosol of purified splenic amastigotes. When evaluated against lymphocytes of curedLeishmania-infected hamsters, the purified recombinant proteins (rLdcTryP and rLdTCP20) induced their proliferations as well as nitric oxide production. Similarly, these proteins also generated Th1-type cytokines (IFN-γ/IL-12) from stimulated PBMCs of cured/endemicLeishmaniapatients. Further, vaccination with rLdcTryP elicited noticeable delayed-type hypersensitivity response and offered considerably good prophylactic efficacy (~78% inhibition) againstL. donovanichallenge in hamsters, which was well supported by the increased mRNA expression of Th1 and Th2 cytokines. However, animals vaccinated with rLdTCP20 exhibited comparatively lesser prophylactic efficacy (~55%) with inferior immunological response. The results indicate the potentiality of rLdcTryP protein, between the two, as a suitable anti-leishmanial vaccine. Since, rLdTCP20 is also an important target, for optimization, further attempts towards determination of immunodominant regions for designing fusion peptides may be taken up.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3