The time-course of the response to the FMRFamide-related peptide PF4 in Ascaris suum muscle cells indicates direct gating of a chloride ion-channel

Author:

PURCELL J.,ROBERTSON A. P.,THOMPSON D. P.,MARTIN R. J.

Abstract

We investigated the effects of PF4 on Ascaris suum somatic muscle cells using a 2 electrode current-clamp technique. PF4 is a FaRP (FMRFamide-related peptide), originally isolated from the free-living nematode Panagrellus redivivus. PF4 caused hyperpolarization and an increase in chloride ion conductance when it was applied to the muscle cells of the Ascaris body wall. The delay between the application of the peptide and the appearance of the response was measured and compared with that of gamma-amino butyric acid (GABA), a compound that directly gates ion channels, and with PF1, a FaRP that acts via an intracellular signal transduction mechanism. The PF4 and GABA delay times were not significantly different; they were 1·51±0·11 sec and 1·22±0·10 sec respectively. The delay following application of PF1, 3·75±0·51 sec, was significantly longer. The rapid response to PF4 is consistent with direct gating of a chloride ion channel, which has not been described elsewhere in the literature.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New techniques, applications and perspectives in neuropeptide research;Journal of Experimental Biology;2018-02-01

2. Invertebrate FMRFamide Related Peptides;Protein & Peptide Letters;2013-04-01

3. Parasite neuropeptide biology: Seeding rational drug target selection?;International Journal for Parasitology: Drugs and Drug Resistance;2012-12

4. Neuropeptide Physiology in Helminths;Neuropeptide Systems as Targets for Parasite and Pest Control;2010

5. A review of FMRFamide- and RFamide-like peptides in metazoa;Invertebrate Neuroscience;2009-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3