Integrating genetics and genomics to identify new leads for the control ofEimeriaspp.

Author:

SHIRLEY M. W.,BLAKE D.,WHITE S. E.,SHERIFF R.,SMITH A. L.

Abstract

Eimerian parasites display a biologically interesting range of phenotypic variation. In addition to a wide spectrum of drug-resistance phenotypes that are expressed similarly by many other parasites, theEimeriaspp. present some unique phenotypes. For example, unique lines ofEimeriaspp. include those selected for growth in the chorioallantoic membrane of the embryonating hens egg or for faster growth (precocious development) in the mature host. The many laboratory-derived egg-adapted or precocious lines also share a phenotype of a marked attenuation of virulence, the basis of which is different as a consequence of thein ovoorin vivoselection procedures used. Of current interest is the fact that some wild-type populations ofEimeria maximaare characterized by an ability to induce protective immunity that is strain-specific. The molecular basis of phenotypes that defineEimeriaspp. is now increasingly amenable to investigation, both through technical improvements in genetic linkage studies and the availability of a comprehensive genome sequence for the caecal parasiteE. tenella. The most exciting phenotype in the context of vaccination and the development of new vaccines is the trait of strain-specific immunity associated withE. maxima. Recent work in this laboratory has shown that infection of two inbred lines of White Leghorn chickens with the W strain ofE. maximaleads to complete protection to challenge with the homologous parasite, but to complete escape of the heterologous H strain, i.e. the W strain induces an exquisitely strain-specific protective immune response with respect to the H strain. This dichotomy of survival in the face of immune-mediated killing has been examined further and, notably, mating between a drug-resistant W strain and a drug-sensitive H strain leads to recombination between the genetic loci responsible for the specificity of protective immunity and resistance to the anticoccidial drug robenidine. Such a finding opens the way forward for genetic mapping of the loci responsible for the induction of protective immunity and integration with the genome sequencing efforts.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

Reference78 articles.

1. BLAKE, D. P. , SMITH, A. L. & SHIRLEY, M. W. (2003).Amplified Fragment Length Polymorphism analyses of Eimeria spp.: an improved process for genetic studies of recombinant parasites.Parasitology Research 90,473–475.

2. Happy mapping: a propoaal for linkage mapping the human genome

3. CORNELISSEN, A. W. , OVERDULVE, J. P. & VAN DER PLOEG, M. (1984).Determination of nuclear DNA of five eucoccidian parasites, Isospora (Toxoplasma) gondii, Sarcocystis cruzi, Eimeria tenella, E. acervulina and Plasmodium berghei, with special reference to gamontogenesis and meiosis in I. (T.) gondii .Parasitology 88,531–553.

4. WALLACH, M. (2001).The development of a maternally-based, subunit vaccine CoxAbic, against coccidiosis in chickens. Proceedings of the VIIIth International Coccidiosis Conference, Cairns, Australia, Australian Society for Parasitology Inc., Queensland,148.

5. WILLIAMS, R. B. (2002 b).Fifty years of anticoccidial vaccines for poultry (1952–2002).Avian Diseases 46,775–802.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3