Abstract
The activities of glycolytic and related enzymes and the tricarboxylic acid cycle enzymes were measured in freshly isolated 1st- (Li), 2nd- (L2) and 3rd-stage (L3) larvae of bothAncylostoma tubaeformeandHaemonchus contortus. All enzymes of the glycolytic pathway were present in all developmental stages of both strongylid nematodes although higher levels of activities were obtained in the pre-infective 1st- and 2nd-stage larvae than in the infective 3rd stage. However, the pre-infective larvae contained lower levels of pyruvate kinase (PK) than the infective larvae. Consequently, the pyruvate kinase to phosphoenolpyruvate carboxykinase (PEPCK) ratios were 0·23 and 0·26 for the L1s and L2s forA. tubaeformeand 0·36 and 0·21 for those ofH. contortusrespectively. High levels of activity of glucose-6-phosphate dehydrogenase obtained in the bacteriophagous pre-infective larvae were consistent with high rates of morphogenesis and substrate synthesis characteristic of the pre-infective stages. All the tricarboxylic acid cycle enzymes were present in the infective larvae of both nematodes while in the pre-infective Li and L2 stages, the enzymes at the beginning of the cycle, namely aconitate hydratase and NAD-linked isocitrate dehydrogenase, were not detected. A scheme was proposed for the energy metabolism of these developing larvae. In this scheme, the pre-infective larvae were shown to operate an anaerobic metabolic pathway involving the carboxylation of phosphoenolpyruvate (PEP) by phosphoenolpyru vate carboxykinase (PEPCK) to form oxaloacetate (OAA), whereas in the infective larvae the metabolic pathway favouring the direct dephosphorylation of PEP, as in vertebrate tissues, was followed.
Publisher
Cambridge University Press (CUP)
Subject
Infectious Diseases,Animal Science and Zoology,Parasitology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献