Interactive effects of protein nutrition, genetic growth potential andHeligmosomoides bakeriinfection pressure on resilience and resistance in mice

Author:

COLTHERD JENNIFER C.,BABAYAN SIMON A.,BÜNGER LUTZ,KYRIAZAKIS ILIAS,ALLEN JUDITH E.,HOUDIJK JOS G. M.

Abstract

SUMMARYThe ability of animals to cope with an increasing parasite load, in terms of resilience and resistance, may be affected by both nutrient supply and demand. Here, we hypothesized that host nutrition and growth potential interact and influence the ability of mice to cope with different parasite doses. Mice selected for high (ROH) or low (ROL) body weight were fed a low (40 g/kg; LP) or high (230 g/kg; HP) protein diet and infected with 0, 50, 100, 150, 200 or 250 L3infectiveHeligmosomoides bakerilarvae. ROH-LP mice grew less at doses of 150 L3and above, whilst growth of ROH-HP and of ROL mice was not affected by infection pressure. Total worm burdens reached a plateau at doses of 150L3, whilst ROH mice excreted fewer worm eggs than ROL mice. Serum antibodies increased with infection dose and ROH mice were found to have higher parasite-specific IgG1 titres than ROL mice. In contrast, ROL had higher total IgE titres than ROH mice, only on HP diets. The interaction between host nutrition and growth potential appears to differentially affect resilience and resistance in mice. However, the results support the view that parasitism penalises performance in animals selected for higher growth.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

Reference62 articles.

1. Host immune responses are necessary for density dependence in nematode infections

2. Selection for growth increases the penalty of parasitism on growth performance in mice;Houdijk;Proceedings of the Nutrition Society,2006

3. Inbred lines of mice derived from long-term growth selected lines: unique resources for mapping growth genes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3