Trypanosoma brucei spp. development in the tsetse fly: characterization of the post-mesocyclic stages in the foregut and proboscis

Author:

VAN DEN ABBEELE J.,CLAES Y.,VAN BOCKSTAELE D.,LE RAY D.,COOSEMANS M.

Abstract

Post-mesocyclic development of Trypanosoma brucei in the tsetse fly in its migration from midgut to salivary glands, was revisited by sequential microdissection, morphometry and DNA-cytofluorometry. This development started by day 6 after the infective feed, with passage of mesocyclic midgut trypomastigotes through proventriculus and upward migration along foregut and proboscis to the salivary gland ducts. Kinetics of salivary gland infection showed that colonization of the salivary glands by epimastigotes occurred only during the time-limited presence of this developmental phase in the foregut and proboscis. Post-mesocyclic trypanosomes in the foregut and proboscis were pleomorphic, with 4 morphological stages in various constant proportions and present all through from proventriculus up to the salivary gland ducts: 67% long trypomastigotes, 27% long epimastigotes, 4% long epimastigotes undergoing asymmetric cell division and 2% short epimastigotes. Measurements of DNA content demonstrated a predominant tetraploidy for 67% of these trypanosomes, the remainder consisting of the homogeneous diploid short epimastigotes and some long epimastigotes. According to the experimental data, the following sequence of trypanosome differentiation in the foregut and proboscis is proposed as the most obvious hypothesis. Incoming mesocyclic trypomastigotes (2N) from the ectoperitrophic anterior midgut start to replicate DNA to a 4N level, are arrested at this point, and differentiate into the long epimastigote (4N) which give rise, by an asymmetric cell division, to 2 unequal, diploid daughter cells: a long, probably dead-end long epimastigote and a short epimastigote. The latter is responsible for the epimastigote colonization of the salivary glands if launched at the vicinity of the gland epithelium by the asymmetric dividing epimastigote.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3