Analysis of proteins synthesizedin vitroby the erythrocytic stages ofPlasmodium knowlesi

Author:

McColm A. A.,Shakespeare P. G.,Trigg P. I.

Abstract

SUMMARYStudies were performed to identify specific parasite proteins synthesized withinPlasmodium knowlesi-infected rhesus erythrocytes. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) of whole parasites freed from the host erythrocyte by immune lysis, of membranous and cytoplasmic parasite fractions, and of isolated merozoites, detected several parasite-specific components after Coomassie Blue staining of the separated proteins. However, significant contamination with host erythrocyte material generally occurred, particularly in the whole parasite and parasite membrane preparations. Improved identification of plasmodial proteins was subsequently afforded by a radioisotope labelling technique in which parasitized erythrocytes were cultivatedin vitrowith [3H] isoleucine prior to electrophoretic analysis. Of 11 principal labelled peaks ranging in molecular weight from approximately 17000 to 145000 which were detected upon electrophoresis of whole parasites harvested from culture, all were observed in the cytoplasmic fraction while at least 5 were also associated with the membranous cell fraction. Analysis of different developmental stages of the intra-erythrocytic parasite revealed no significant stage-specific qualitative variations in the electrophoretic profiles. Quantitatively, however, the middle to late trophozoites incorporated more [3H] isoleucine into protein than the other intra-erythrocytic stages. Analysis of merozoites purified from labelled schizonts showed a protein pattern similar to the other stages. This confirmed that host components did not contribute to the labelling pattern and that none of the labelled proteins were specific to the residual cytoplasm remaining after merozoite formation.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3