Author:
CATALANO SARAH R.,WHITTINGTON IAN D.,DONNELLAN STEPHEN C.,BERTOZZI TERRY,GILLANDERS BRONWYN M.
Abstract
SUMMARYDicyemids, poorly known parasites of benthic cephalopods, are one of the few phyla in which mitochondrial (mt) genome architecture departs from the typical ~16 kb circular metazoan genome. In addition to a putative circular genome, a series of mt minicircles that each comprises the mt encoded units (I–III) of the cytochromecoxidase complex have been reported. Whether the structure of the mt minicircles is a consistent feature among dicyemid species is unknown. Here we analyse the complete cytochromecoxidase subunit I (COI) minicircle molecule, containing theCOIgene and an associated non-coding region (NCR), for ten dicyemid species, allowing for first time comparisons between species of minicircle architecture, NCR function and inferences of minicircle replication. Divergence inCOInucleotide sequences between dicyemid species was high (average net divergence = 31·6%) while within species diversity was lower (average net divergence = 0·2%). The NCR and putative 5′ section of theCOIgene were highly divergent between dicyemid species (average net nucleotide divergence of putative 5′COIsection = 61·1%). No tRNA genes were found in the NCR, although palindrome sequences with the potential to form stem-loop structures were identified in some species, which may play a role in transcription or other biological processes.
Publisher
Cambridge University Press (CUP)
Subject
Infectious Diseases,Animal Science and Zoology,Parasitology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献