Efficacy of flukicides on Fasciola gigantica, a food-borne zoonotic helminth affecting livestock in Bangladesh

Author:

Hasan Mohammad Manjurul,Roy Babul Chandra,Biswas Hiranmoy,Rahman Moizur,Anisuzzaman AnisuzzamanORCID,Alam Mohammad ZahangirORCID,Talukder Md. HasanuzzamanORCID

Abstract

AbstractFasciola gigantica, the causative agent of tropical fasciolosis, is a food-borne zoonotic trematode that affects around 80% livestock of Bangladesh. Triclabendazole (TCBZ), nitroxynil (NTON) and oxyclozanide (OCZN) are frequently used against fascioliasis; however, the current status of potency of these flukicides was unknown. In this study, in vitro efficacy of TCBZ, NTON and OCZN at various concentrations on F. gigantica has been evaluated by relative motility (RM), morphological distortions of apical cone through an inverted microscope, architectural and ultra-structural changes through histopathological and scanning electron microscopy (SEM). It is observed that TCBZ, NTON and OCZN at higher concentrations significantly (P < 0.05) reduced RM of the flukes compared to untreated control. NTON at 150 μg mL−1 was the most potent to reduce the motility within 4 h whereas TCBZ and OCZN were much delayed. Histopathological changes showed swollen, extensive cracking, numerous vacuoles and splitting of the tegument surrounding the spines; spine dislodged from its socket in treated flukes compared to untreated worms. Histopathological changes were more conspicuous at higher doses of TCBZ, NTON and OCZN. SEM has shown the disruption of the apical cone, apart from swelling of the tegument on the ventral surface corrugation and disruption of the ventral apical cone. All these changes indicate that NTON is the most potent in killing flukes in vitro among the tested flukicides and suggest the presence of TCBZ-resistant fluke populations in Bangladesh. It is imperative to explore the in vivo effects of these flukicides and subsequently their molecular mechanisms.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3