Fish–parasite interaction networks reveal latitudinal and taxonomic trends in the structure of host–parasite associations

Author:

Poulin RobertORCID,McDougall Cameron

Abstract

AbstractIn recent years, treating host–parasite associations as bipartite interaction networks has proven a powerful tool to identify structural patterns and their likely causes in communities of fish and their parasites. Network analysis allows for both community-level properties to be computed and investigated, and species-level roles to be determined. Here, using data from 31 host–parasite interaction networks from local fish communities around the world, we test for latitudinal trends at whole-network level, and taxonomic patterns at individual parasite species level. We found that while controlling for network size (number of species per network), network modularity, or the tendency for the network to be subdivided into groups of species that interact mostly with each other, decreased with increasing latitude. This suggests that tropical fish–parasite networks may be more stable than those from temperate regions in the event of community perturbations, such as species extinction. At the species level, after accounting for the effect of host specificity, we observed no difference in the centrality of parasite species within networks between parasites with different transmission modes. However, species in some taxa, namely branchiurans, acanthocephalans and larval trematodes, generally had higher centrality values than other parasite taxa. Because species with a central position often serve as module connectors, these 3 taxa may play a key role in whole-network cohesion. Our results highlight the usefulness of network analysis to reveal the aspects of fish–parasite community interactions that would otherwise remain hidden and advance our understanding of their evolution.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3