A common multi-host parasite shows genetic structuring at the host species and population levels

Author:

Shaw Clara L.ORCID,Bilich Rebecca,Duffy Meghan A.ORCID

Abstract

Abstract Although individual parasite species commonly infect many populations across physical space as well as multiple host species, the extent to which parasites traverse physical and phylogenetic distances is unclear. Population genetic analyses of parasite populations can reveal how parasites move across space or between host species, including helping assess whether a parasite is more likely to infect a different host species in the same location or the same host species in a different location. Identifying these transmission barriers could be exploited for effective disease control. Here, we analysed population genetic structuring of the parasite Pasteuria ramosa in daphniid host species from different lakes. Outbreaks occurred most often in the common host species Daphnia dentifera and Daphnia retrocurva. The genetic distance between parasite samples tended to be smaller when samples were collected from the same lake, the same host species and closer in time. Within lakes, the parasite showed structure by host species and sampling date; within a host species, the parasite showed structure by lake and sampling date. However, despite this structuring, we found the same parasite genotype infecting closely related host species, and we sometimes found the same genotype in nearby lakes. Thus, P. ramosa experiences challenges infecting different host species and moving between populations, but doing so is possible. In addition, the structuring by sampling date indicates potential adaptation to or coevolution with host populations and supports prior findings that parasite population structure is dynamic during outbreaks.

Funder

National Science Foundation

Gordon and Betty Moore Foundation

Publisher

Cambridge University Press (CUP)

Reference62 articles.

1. Dispersal, host genotype and environment shape the spatial dynamics of a parasite in the wild

2. hierfstat, a package for r to compute and test hierarchical F-statistics

3. A statistical method for evaluating systematic relationships;Sokal;University of Kansas Science Bulletin,1958

4. R Core Team (2020) R: A Language and Environment for Statistical Computing.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3