Abstract
AbstractSwimmer's itch (SI) is a painful rash caused by skin penetration by free-swimming infectious cercariae of avian schistosomes, snail-borne helminth parasites related to the causative agents of human schistosomiasis. The goal of this study was to determine if commonly collected environmental data could be used to predict daily fluctuations in SI incidence at an inland beach in northwestern Michigan. Lifeguards collected daily data over four summers, including the number of self-reported SI cases, total swimmers, water temperature, wind speed and wind direction. Mixed-effects binomial regression revealed that wind direction, wind speed and time of day were the best predictors of daily SI risk. Swimmers entering the water in the morning or on days with direct onshore wind perpendicular to the shoreline had the greatest SI risk. However, there was a negative effect of wind speed after accounting for direction, where SI risk was greatest on days with a gentle breeze originating directly offshore. These results suggest that at this beach, direct onshore winds generate a surface-water current that causes SI cercariae to aggregate in the shallow waters used by swimmers. Data are needed from additional sites to confirm whether the onshore wind is a generally important driver of SI incidence.
Publisher
Cambridge University Press (CUP)
Subject
Infectious Diseases,Animal Science and Zoology,Parasitology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献