Abstract
AbstractWe analyze the strength of the existence of idempotent ultrafilters in higher-order reverse mathematics.Let $\left( {{{\cal U}_{{\rm{idem}}}}} \right)$ be the statement that an idempotent ultrafilter on ℕ exists. We show that over $ACA_0^\omega$, the higher-order extension of ACA0, the statement $\left( {{{\cal U}_{{\rm{idem}}}}} \right)$ implies the iterated Hindman’s theorem (IHT) and we show that $ACA_0^\omega + \left( {{{\cal U}_{{\rm{idem}}}}} \right)$ is ${\rm{\Pi }}_2^1$-conservative over $ACA_0^\omega + IHT$ and thus over $ACA_0^ +$.
Publisher
Cambridge University Press (CUP)
Reference22 articles.
1. [16] Kohlenbach Ulrich , On the no-counterexample interpretation, this Journal, vol. 64 (1999), no. 4, pp. 1491–1511.
2. ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES
3. Recursive functionals and quantifiers of finite types. I;Kleene;Transactions of the American Mathematical Society,1959
4. Ultrafilters, IP sets, dynamics, and combinatorial number theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献