Approximations of geometrically ergodic reversible markov chains

Author:

Negrea JeffreyORCID,Rosenthal Jeffrey S.ORCID

Abstract

AbstractA common tool in the practice of Markov chain Monte Carlo (MCMC) is to use approximating transition kernels to speed up computation when the desired kernel is slow to evaluate or is intractable. A limited set of quantitative tools exists to assess the relative accuracy and efficiency of such approximations. We derive a set of tools for such analysis based on the Hilbert space generated by the stationary distribution we intend to sample, $L_2(\pi)$. Our results apply to approximations of reversible chains which are geometrically ergodic, as is typically the case for applications to MCMC. The focus of our work is on determining whether the approximating kernel will preserve the geometric ergodicity of the exact chain, and whether the approximating stationary distribution will be close to the original stationary distribution. For reversible chains, our results extend the results of Johndrow et al. (2015) from the uniformly ergodic case to the geometrically ergodic case, under some additional regularity conditions. We then apply our results to a number of approximate MCMC algorithms.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Reference37 articles.

1. [14] Huggins, J. , Campbell, T. and Broderick, T. (2016). Coresets for scalable Bayesian logistic regression. In Advances in Neural Information Processing Systems 29 (NIPS 2016), eds Lee, D. et al., NIPS, Barcelona, pp. 4080–4088.

2. Geometric Ergodicity of Gibbs and Block Gibbs Samplers for a Hierarchical Random Effects Model

3. Approximate inference in generalized linear mixed models;Breslow;J. Amer. Statist. Assoc.,1993

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3