Abstract
Abstract
Where does a probabilistic language-of-thought (PLoT) come from? How can we learn new concepts based on probabilistic inferences operating on a PLoT? Here, I explore these questions, sketching a traditional circularity objection to LoT and canvassing various approaches to addressing it. I conclude that PLoT-based cognitive architectures can support genuine concept learning; but, currently, it is unclear that they enjoy more explanatory breadth in relation to concept learning than alternative architectures that do not posit any LoT.
Publisher
Cambridge University Press (CUP)
Subject
Behavioral Neuroscience,Physiology,Neuropsychology and Physiological Psychology